
1 23

EURO Journal on Computational
Optimization
 
ISSN 2192-4406
Volume 2
Number 4
 
EURO J Comput Optim (2014) 2:247-277
DOI 10.1007/s13675-013-0019-7

Optimal selection of contracts and work
shifts in multi-skill call centers

Roberto Cordone, Pierre Hosteins,
Giovanni Righini, Paolo Ravizza &
Andrea Piselli



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg and EURO - The

Association of European Operational Research

Societies. This e-offprint is for personal

use only and shall not be self-archived

in electronic repositories. If you wish to

self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



EURO J Comput Optim (2014) 2:247–277
DOI 10.1007/s13675-013-0019-7

ORIGINAL PAPER

Optimal selection of contracts and work shifts
in multi-skill call centers

Roberto Cordone · Pierre Hosteins ·
Giovanni Righini · Paolo Ravizza · Andrea Piselli

Received: 27 March 2013 / Accepted: 17 December 2013 / Published online: 14 January 2014
© Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research
Societies 2014

Abstract This paper deals with the problem of finding the most suitable contracts to
be used when hiring the operators of a call center and deciding their optimal working
schedule, to optimize the trade-off between the service level provided to the customers
and the cost of the personnel. In a previous paper (Cordone et al. 2011), we proposed
a heuristic method to quickly build an integer solution from the solution of the contin-
uous relaxation of an integer linear programming model. In this paper, we generalize
that model to take into account a much wider class of working contracts, allowing
heterogeneous shift patterns, as well as legal constraints related to continuously active
working environments. Since our original rounding heuristic cannot be extended to the
new model, due to its huge size and to the involved correlations between different sets
of integer variables, we introduce a more sophisticated heuristic based on decompo-
sition and on a multi-level iterative structure. We compare the results of this heuristic
with those of a Greedy Randomized Adaptive Search Procedure, both on real-world
instances and on realistic random instances.
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Introduction

The inherent complexity of call center design and management and the growing size of
the organizations involved in customer operations strongly call for precise optimization
techniques that allow a satisfactory trade-off between the level of service provided to
the customers and the cost of providing it. On one hand, the personnel costs could
largely exceed the needs; on the other hand, the customers could receive a poor level of
service, in terms of timely and satisfactory responses. This motivates the development
of decision support systems, including tools to forecast, control and improve key
performance indicators. The aim is to optimize the relation between the volume of the
demand, the resources deployed, and the quality of service.

Workforce management in call centers is a paradigmatic example of service opti-
mization, illustrating the fundamental role of operations research in service science,
since a large amount of the call center operational costs are related to its personnel. For
an extensive treatment of call center management problems and techniques, we refer
to (Gans et al. 2003). Multi-skill call centers, in particular, require not only to define
the appropriate number of operators, but also to determine in detail the appropriate
mix of skills provided at each time of each day during a given time horizon. To model
this situation, each operator is characterized by a profile, i.e. a set of skills. In the
ideal case, all operators should have all skills, but this would be too costly. However,
a careful mix and distribution of operators with a limited number of skills are enough
to provide significant benefits to the overall performance at a limited training cost.
This has been shown, under mild assumptions, even in the case of operators with as
few as two skills (Wallace and Whitt 2005). In practice, typical examples of skills
are the ability to speak a certain foreign language or basic knowledge on particular
software packages for which the call center provides assistance. Since different cus-
tomers require different combinations of skills and no operator usually has all skills,
one information of importance to a call center management team is what combinations
of skills are more beneficial, and consequently whether it would be profitable to train
operators to acquire certain additional skills.

Call centers must guarantee at any time the presence of a suitable number of oper-
ators and a suitable amount of skills according to the forecasted level of demand. This
problem is usually referred to as the staffing problem. In mono-skill services, where
the operators run a single type of activity and the volume of calls is very high and
well-predictable, queuing theory techniques are enough to provide a reliable estimate
of the number of operators needed. The forecast of the demand can be refined to take
into account the granularity of the time periods considered, as well as end-of-the-
day and peak-hours effects and other details; see for instance Green et al. (2007).
An introduction to the staffing problem with a detailed survey can be found in Aksin
et al. (2007). In multi-skill call centers, where the operations are more complex, the
operators cannot be considered interchangeable any more, because each of them has
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distinctive skills. Moreover, a suitable mix of complementary skills must be available
in the call center at any time of the day. In these cases, the simplifying assumptions
about stationary conditions required by queuing theory typically lead to overestimates
or underestimates of the number of required operators, and hence to cost inefficiency
or performance degradation. Then, simulation and analytical techniques, often used
as complementary approaches, can be applied to the staffing problem.

The scientific literature is rich with contributions on statistical and simulation mod-
els of incoming calls (Channouf et al. 2007) and consequent phenomena of waiting
queues, abandoned calls and call transfers (Avramidis et al. 2009), which allow the
level of required capacity to be estimated. Once this has been decided, the next prob-
lem is to define suitable work shifts and to assign operators to them, to meet those
requirements. While doing that, it is also necessary to consider a significant num-
ber of detailed constraints related to labor contracts. The literature on staffing often
neglects most of these constraints. All these issues complicate significantly the relation
between the decision variables (number and type of labor contracts, operator assign-
ment, day-by-day work shifts) and the effects produced (costs and level of service
obtained during each day) (Avramidis et al. 2007; Chan et al. 2007). Most of the few
approaches which take into account all the features mentioned above work in two
phases: the former defines the optimal set of operators, the latter computes the optimal
schedule for the given set of operators (Pot 2006; Pisacane et al. 2006). Unfortu-
nately, the independent solution of the shift rostering problem and the shift scheduling
problem is a source of inefficiency, as pointed out in the comprehensive review paper
by Aksin et al. (2007), which collects contributions combining simulation, queuing
theory, mathematical programming and heuristics.

Our previous study ( Cordone et al. 2011) provided an integrated solution for
the two different, but related, sub-problems of defining (1) the optimal mix of labor
contracts to stipulate with the operators and (2) the optimal schedule of work shifts of
the operators. This paper aims at extending the range of application to a wider set of
possible contracts, to take into account the increase in the number of allowed contract
types in modern call centers. We also consider additional constraints related to the
correct assignment of work shifts to the operators. For example, we avoid assigning
two work shifts too close to each other, which can easily happen in call centers whose
activity extends continuously 24 h a day. We also extend the time horizon over which
the model is solved to take into account some sort of seasonality. The model obtained
is significantly harder compared to that studied in Cordone et al. (2011). To cope with
the increased complexity of the new problem, we introduce a heuristic which exploits
the mathematical programming formulation of the problem to decompose it into sub-
problems, and derive from the continuous relaxation of each sub-problem an integer
solution through a multi-level iterative rounding approach. For comparison purposes,
this work also proposes a Greedy Randomized Adaptive Search Procedure (GRASP)
to build solutions in a more straightforward manner Feo and Resende (1989). Finally,
we show that, on a set of real-world and of realistic instances, the two methods provide
solutions of comparable quality. We do not address here the rostering problem, that is
the assignment of specific individual operators to work shifts, because in our case all
operators with the same skill profile and labor contract are indistinguishable, and no
personal preferences are taken into account at this level of detail.
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250 R. Cordone et al.

Section 2 defines the integrated problem and provides its integer linear programming
(ILP) formulation. Sections 3 and 4, respectively, describe the rounding heuristic
adopted to attack the huge ILP formulation, and the alternative GRASP heuristic.
Section 5 presents computational results on real-world as well as randomly generated
instances.

Problem description

The problem we consider here is to determine how many operators with a given
set of skills should be hired with each available contract form and how their work
shifts should be organized during a given time horizon, to meet as tightly as possible
a forecasted demand profile for each set of skills. Since the problem considered is
extremely complex and exhibits several levels of detail, we structure its presentation
in subsequent steps, starting from the more general level, with the objective function,
the decision variables directly influencing it and the main constraints linking them.
The following subsections will focus on more specific aspects, concerning the relation
between contracts, shifts and lunch breaks, the balance between different contract
types, and the distribution of shifts over time (weekly shift patterns, synchronization
along the days of a week, minimum distance between consecutive shifts, rest periods).

General framework

Data (1). A profile is defined as a set of particular skills used to classify the operators:

• G is the set of all possible operator profiles.

Operators with the same profile are considered undistinguishable. No personal pref-
erences or personal data are taken into account.

The time horizon is defined as follows:

• O is a sequence of consecutive weeks;
• each week is composed of a sequence D = {1, . . . , 7} of 7 days;
• each day is composed of a sequence T = {1, . . . , |T |} of time slices of given

duration L , extending over 24 h.

In our experiments, we used |T | = 48 time slices of L = 30 min.
The working schedule must be planned over the time horizon to meet an estimate

of the skills demanded in each time slice:

• fgodt is the number of operators required for each profile g ∈ G, week o ∈ O, day
d ∈ D and time slice t ∈ T .

This forecast describes the expected seasonality of the demand and is assumed to
have been obtained in a previous analysis (see Cordone et al. 2011).

The estimated demand can be missed, in excess or in defect, but the difference
between the achieved and the required values must be made as small as possible.

Variables (1). We define the following decision variables for each profile g ∈ G, week
o ∈ O, day d ∈ D and time slice t ∈ T :
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• ygodt , integer, is the number of operators at work;
• w+

godt , w
−
godt ≥ 0 are the surplus and deficit of operators with respect to the fore-

casted demand fgodt .

Objective function. The objective function, to be minimized, is a weighted combination
of over- and under-staffing:

min
∑

g∈G

∑

o∈O

∑

d∈D

∑

t∈T

[
αw+

godt + (1 − α)w−
godt

]
(1)

where parameter α ∈ [0, 1] weighs the relative importance of the surplus and the
deficit of operators, and consequently determines the trade-off between the personnel
cost and the level of service.

Constraints (1). The variables are linked by the following relations:

w+
godt ≥ ygodt − fgodt o ∈ O, g ∈ G, d ∈ D, t ∈ T (2)

w−
godt ≥ fgodt − ygodt o ∈ O, g ∈ G, d ∈ D, t ∈ T (3)

Data (2). We also denote by

• � the maximum number of operators that can be simultaneously working at
any time,

i.e. the number of physically available desks in the call center.

Constraints (2). The model includes the following capacity constraint:
∑

g∈G
ygodt ≤ � o ∈ O, d ∈ D, t ∈ T (4)

Contracts, shifts and patterns

The operators of multi-skill call centers usually have a wide variety of different labor
contracts. The mix of contracts adopted by a call center service has a relevant influence
on the possibility to track the forecasted demand of different skill profiles over time,
because the contracts determine not only the total amount of work hours of each
operator during the time horizon, but also their detailed distribution. The patterns
followed by work shifts can be quite sophisticated and sometimes they yield complex
situations in which the same operator performs different shifts in different weeks.

Another relevant issue is the distribution of lunch breaks, which create a notice-
able reduction in the number of available operators. Neglecting it would introduce a
systematic error in the evaluation of the objective function.

To account for these details, it is necessary to introduce additional data, decision
variables and constraints.

Data (3). We define the following two sets:

• M is the set of all possible contracts;
• H is the set of all possible work shifts.

123

Author's personal copy



252 R. Cordone et al.

Each work shift is characterized by its time length:

• δh is the number of consecutive time slices of length L taken by shift h ∈ H.

Conventionally, shift h = 0 models a day of rest, and has δ0 = 0.
For each contract m ∈ M we also define:

• Wm as the set of weekly shift patterns for contract m ∈ M;
• Nmwh as the number of shifts of type h ∈ H that must be assigned each week to a

worker with contract m ∈ M following pattern w ∈ Wm .

A shift pattern w does not determine the specific days and time slices in which the
work shifts must be performed, but constrains their overall number of occurrences:

• set Hmwd collects the work shifts available for an operator with contract m ∈ M
following weekly pattern w ∈ Wm in day d ∈ D;

• set Tmwdh collects the time slices in which an operator with contract m ∈ M who
follows the weekly pattern w ∈ Wm can start shift h ∈ Hmwd in day d ∈ D;

• smw is the number of weeks during the time horizon O for which an operator with
contract m ∈ M must follow pattern w ∈ Wm .

Example 1 Let contract m admit two weekly shift patterns Wm = {w1, w2}:
• patternw1 includes a shift of 8 hours (8 h) and a rest shift (0), that must be performed,

respectively, five times (Nmw1 8 h = 5) and two times (Nmw1 0 = 2); Saturday and
Sunday must be days of rest (Hmw1 6 = Hmw1 7 = {0});

• patternw2 includes four shifts (0,4 h,6 h,8 h), Hm2 = {0, 4 h, 6 h, 8 h}, respectively,
with Nmw2 0 = 2, Nmw2 4 h = 2, Nmw2 6 h = 1 and Nmw2 8 h = 2 repetitions per
week; on Wednesday the 4-h shift is mandatory (Hmw2 3 = {4 h}).

Assuming a 4-week time horizon O = {1, 2, 3, 4}, with 2 weeks for each shift pattern
(smw1 = 2 and smw2 = 2), an example of feasible solution could be:

Week Pattern Day

o w Mon Tue Wed Thu Fri Sat Sun

1 w1 8 h 8 h 8 h 8 h 8 h 0 0

2 w2 0 6 h 4 h 4 h 0 4 h 8 h

3 w2 6 h 8 h 4 h 8 h 0 0 4 h

4 w1 8 h 8 h 8 h 8 h 8 h 0 0

Notice that in patternw1 the assignment of shifts to days is completely fixed, whereas
patternw2 allows some flexibility; in fact, the distribution of shifts along weeks o = 2
and o = 3 is different, even though they both follow pattern w2.

For a subset Mfix ⊆ M of contracts,Wm is associated with a given fixed sequence
ofωm weekly shift patterns which must be followed exactly. For the sake of simplicity,
the operators with each of those contracts are divided into |O| equal groups which
follow circular shifts of the fixed sequence.
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Example 2 Let contract m admit three weekly shift patterns Wm = {w1, w2, w3}
with smw1 = 1, smw2 = 2 and smw3 = 1, associated with the sequence ωm =
(w1, w2, w3, w2). The time horizon spans over four weeks (O = {1, . . . , 4}).

An example of feasible solution could be the following. Notice how the sequence
ωm is circularly shifted on |O| different groups of operators, to achieve a balanced
distribution.

Week Operator group

o 1 2 3 4

1 w1 w2 w3 w2

2 w2 w1 w2 w3

3 w3 w2 w1 w2

4 w2 w3 w2 w1

All these characteristics define a very broad range of contract types, full-time or
part-time, with or without fixed resting days, with an explosive number of shift com-
binations. Further refinements in the description of contracts will be given in the
following sections.

Variable (3). To describe the distribution of shifts over time, we introduce the following
variables:

• zgmwodht , integer, is the number of operators with profile g ∈ G and contract m ∈ M
who follow patternw ∈ Wm during week o ∈ O and in day d ∈ D perform working
shift h ∈ Hmwd starting at time slice t ∈ Tmwdh ;

Notice that variables z give a very fine-grained description of the solution:a deeper
detail would amount to considering each operator individually. These variables are set
to zero for all forbidden combinations of the indices, i.e., whenw /∈ Wm or h /∈ Hmwd

or t /∈ Tmwdh .

Constraints (3). We are given the following threshold:

• vmt is the maximum allowed number of operators with contract m ∈ M who can
start working at time t ∈ T in any day of the time horizon.

This is to ensure that the operators with the same contract are distributed among
different times of the day. The number of operators simultaneously starting a shift is
hence limited by the following constraint:

∑

g∈G

∑

w∈Wm

∑

h∈Hmwd

zgmwodht ≤ vmt m ∈ M, o ∈ O, d ∈ D, t ∈ T (5)

Lunch breaks

Variables (4). To describe the distribution of lunch breaks over time, we introduce the
following variables:
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• ψgmodht , integer, is the number of operators with profile g ∈ G and contract m ∈ M,
who in week o ∈ O and day d ∈ D perform shift h ∈ H and leave for lunch in time
slice t ∈ T .

Data (4). We denote by

• πmh the duration of lunch breaks for operators with contract m ∈ M performing
shift h ∈ H,

• ηmht and μmht the minimum distance from the beginning and from the end of the
shift which an operator must respect when leaving for lunch, depending on the
contract m ∈ M, the shift h ∈ H and the starting time slice t ∈ T .

Each of these time lengths is expressed as a number of consecutive time slices.

Constraints (4). First of all, Eq. (6) forces the number of operators having a lunch break
on a specific day d (left-hand side) to be equal to the number of shifts that require a
lunch break on the same day (right-hand side). Notice that the latter term sums shifts
starting early enough on day d and shifts starting late enough on the previous day,
d − 1. To guarantee the minimum distance of a lunch break from the beginning of the
shift, the left-hand side of Constraint (7) enumerates the lunch breaks starting no later
than time t , while the right-hand side enumerates the shifts for which the lunch break
can start no later than t : the inequality guarantees that no lunch break starts too early.
Analogously, the left-hand side of Constraint (8) enumerates the lunch breaks starting
no sooner than time t , while the right-hand side enumerates the shifts for which the
lunch break can end no sooner than t : the inequality guarantees that no lunch break
starts too late. The use of inequalities to impose the correct distribution of lunch breaks
could allow to introduce less breaks than shifts, but this is forbidden by Eq. (6).

|T |∑

t=1

ψgmodht =
∑

w∈Wm

⎛

⎝
|T |−ηmht +1∑

t=1

zgmwodht +
|T |∑

t=|T |−ηmht +2

zgmwo d−1 ht

⎞

⎠

g ∈ G, (m, h) ∈ M × H : πmh > 0, o ∈ O, d ∈ D (6)

t∑

τ=1

ψgmodhτ ≤
∑

w∈Wm

⎛

⎝
t−ηmhτ+1∑

τ=1

zgmwodhτ +
t−ηmhτ+1+|T |∑

τ=|T |−δh+μmhτ+1

zgmwo d−1 hτ

⎞

⎠

g ∈ G, (m, h) ∈ M × H : πmh > 0, o ∈ O, d ∈ D, t ∈ T (7)

|T |∑

τ=t

ψgmodhτ ≤
∑

w∈Wm

⎛

⎝
|T |∑

τ=t−δh+μmhτ

zgmwodhτ +
|T |∑

τ=t−δh+μmhτ+|T |
zgmwo d−1 hτ

⎞

⎠

g ∈ G, (m, h) ∈ M × H : πmh > 0, o ∈ O, d ∈ D, t ∈ T (8)

The y variables, which measure the service offer, are directly related to the z and
ψ variables:
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ygodt =
∑

m∈M

∑

h∈H

⎛

⎝
∑

w∈Wm

t∑

τ=t−δh+1

zgmwodhτ −
t∑

τ=t−πmh+1

ψgmodhτ

⎞

⎠

g ∈ G, o ∈ O, d ∈ D, t ∈ T (9)

Notice that, when t − δh + 1 < 0 or t − πmh + 1 < 0, the negative values of index τ
should be interpreted modulo 24 h, as representing time slices of day d − 1. If d = 1,
they represent, modulo 7 days, time slices of week o − 1. If they point to time slices
preceding the current time horizon, one should derive their values from the data on
the working shifts assigned in the previous period.

Contract mix

We need to take into account also limitations on the number of operators that can
be allocated to each type of contract. In practice, for example, law restrictions can
impose a minimum fraction of full-time contracts, so that we may want to limit the
amount of part-time contracts to obtain an acceptable balance. Similar limitations can
be required by the management.

Data (5). In particular:

• V max
m is the maximum number of operators that can have contract m ∈ M;

• umin
gm , umax

gm are the minimum and maximum numbers of operators with a given profile
g ∈ G and contract m ∈ M.

Variables (5). The balance requirements can be expressed using the fine-grained vari-
ables z, but to make the model more readable we introduce ad hoc aggregated variables:

• ngmwo, integer, is the number of operators with profile g ∈ G and contract m ∈ M
who follow pattern w ∈ Wm during week o ∈ O;

• xgm , integer, is the number of operators with profile g ∈ G and contract m ∈ M.

Constraints (5). The new variables can be directly expressed in terms of the low-level
ones:

ngmwo =
∑

h∈Hmwd

∑

t∈T
zgmwodht g ∈ G,m ∈ M, o ∈ O, d ∈ D, w ∈ Wm (10)

xgm =
∑

w∈Wm

ngmwo g ∈ G,m ∈ M, o ∈ O (11)

Notice that in constraints (10) the sum which defines ngmwo assumes the same value
for all days d ∈ D.

The following constraints enforce the correct amount of work shifts for each contract
and week pattern, and that the division among the different week types must be coherent
over the whole time horizon O:
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∑

d∈D

∑

t∈T
zgmwodht = Nmwhngmwo g ∈ G,m ∈ M, w ∈ Wm, o ∈ O, h ∈ H (12)

∑

o∈O
ngmwo = smwxgm g ∈ G,m ∈ M \ Mfix, w ∈ Wm (13)

|O| ngmwo = smwxgm g ∈ G,m ∈ Mfix, w ∈ Wm, o ∈ O (14)

Notice that the last constraint requires the operators following the sequence associated
with contract m to be divided evenly among the |O| possible circular shifts. In general,
this should be slightly relaxed to avoid conflicts with the integrality requirement.
However, both the rounding method, which starts from the continuous relaxation of
the model, and the GRASP heuristic are able to cope with such an approximation.

The balance between different contracts is imposed constraining the x variables as
follows:

umin
gm ≤ xgm ≤ umax

gm g ∈ G,m ∈ M (15)
∑

g∈G
xgm ≤ V max

m m ∈ M (16)

Labor regulations

We now introduce constraints which ensure that the distribution of the work shifts
and rest days over the time horizon respects labor regulations. Since modeling the
schedule of each single operator would require an unmanageable level of detail,
these constraints are imposed on groups of operators, which are assumed to be inter-
changeable. Should this assumption lead to infeasibility, we resort to an auxiliary
repair routine that is also used to continuously adapt the plan to unpredicted dis-
ruptions due to illnesses, holidays, technical problems, and so on. This routine is
quite elementary and allows a controlled violation of the less rigid constraints of the
model.

The most relevant outcome of the present model is at a strategic level, and consists
of the effective distribution of work contracts and profiles among the operators, repre-
sented by the values of the x variables, which are not likely to be significantly affected
by such minor disruptions. On the other hand, obtaining a detailed schedule, besides
being a useful result in itself, gives a reasonable guarantee that the mix of contracts
adopted allows to satisfy all constraints with minor modifications while meeting the
demand profile.

Data (6). We define:

• 
m : the maximum number of consecutive working days without a rest according
to contract m ∈ M;

• φ: the minimum required interval between the end of a work shift and the beginning
of the next one.

Constraints (6). An operator cannot work more than a certain number of days in a row,
without taking a day off:
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∑

w∈Wm

d−1∑

d̄=d−
m

∑

t∈T

∑

h∈H\{0}
zgmwod̄ht − (
m − 1)xgm ≤

∑

w∈Wm

∑

t∈T
zgmwod0t

g ∈ G,m ∈ M, o ∈ O, d ∈ D (17)

Notice that the indices d −
m and d − 1, when smaller than 1, should be interpreted
modulo 7, propagating the corresponding day over a preceding week. The right-hand
side of Constraint (17) indicates the number of operators resting on day d; the left-hand
side is a lower limit on the number of operators working during the
m previous days.

The separation between two consecutive work shifts is enforced by requiring the
number of operators starting to work during any time interval of length φ + δh to be
never larger that the total number of operators:

∑

w∈Wm

∑

h∈H\{0}

t∑

τ=t−φ−δh+1

zgmwodhτ ≤ xgm g ∈ G,m ∈ M, d ∈ D, t ∈ T (18)

Once again, index τ = t − φ − δh + 1 should be interpreted modulo 24 h, extending
over the previous day, or even the previous week for d = 1.

Synchronization

Some particular contracts require the work shifts to be synchronized in different days
according to specific rules.

Data (7). Let S ⊆ M be the subset of contracts which require the operators to start
their shifts at the same time slice in different days of the week. We consider three
cases: (1) S1 includes contracts synchronized over the whole week, (2) S2 includes
contracts synchronized from Monday to Friday, (3) S3 includes contracts synchronized
independently on two different time slices from Monday to Friday and during the
weekend.

Variables (7). Correspondingly, we use the following variables, which are slightly
more detailed than the z variables, though still avoiding an individual description of
the operators:

• νgmwot , integer, is the number of operators with profile g ∈ G and contract m ∈ S1
who follow pattern w ∈ Wm and during all days of week o ∈ O start working at
time t ∈ T ;

• ν
h1h2
gmwot , integer, is the number of operators with profile g ∈ G and contract m ∈

S2 ∪ S3 who follow pattern w ∈ Wm and in week o ∈ O start working at time
t ∈ T from Monday to Friday and are assigned shift h1 on Saturday and shift h2
on Sunday;

• γ
h1h2
gmwodht , integer, is the number of operators with profile g ∈ G and contract

m ∈ S2 ∪ S3 who follow pattern w ∈ Wm and in week o ∈ O and day d ∈ D
perform shift h ∈ H starting at time slice t ∈ T , while performing shift h1 ∈ H
on Saturday and shift h2 ∈ H on Sunday (therefore, γ h1h2

gmwodht = 0 for d = 6 and
h �= h1 and for d = 7 and h �= h2).
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Constraints (7). The contracts in S1 require that each operator starts his shift at the
same time slice over the whole week:

∑

d∈D
zgmwodht = Nmwh νgmwot g ∈ G,m ∈ S1, w ∈ Wm, o ∈ O, h ∈ H, t ∈ T

(19)
For the other contracts, the γ and z variables are related as follows:

zgmwodht =
∑

h1∈H

∑

h2∈H
γ

h1h2
gmwodht

g ∈ G,m ∈ S2 ∪ S3, w ∈ Wm, o ∈ O, d ∈ D, h ∈ Hmwd , t ∈ T
(20)

The contracts in S2 and S3 must be synchronized from Monday to Friday:

5∑
d=1

γ
h1h2
gmwodht = β

h1h2
mwh ν

h1h2
gmwot g ∈ G,m ∈ S2 ∪ S3, w ∈ Wm, o ∈ O,

t ∈ T , h ∈ H, h1 ∈ Hmw6, h2 ∈ Hmw7

(21)

where

β
h1h2
mwh =

⎧
⎪⎨

⎪⎩

Nmwh for h ∈ H \ {h1, h2}
Nmwh − 1 for h ∈ {h1, h2} and h1 �= h2

Nmwh − 2 for h = h1 = h2

The operators should perform the correct number of shifts during the weekend:

∑

t∈T
ν

h1h2
gmwot =

∑

t∈T
γ

h1h2
gmwo 6h1t , h1 ∈ H, h2 ∈ H (22)

∑

t∈T
ν

h1h2
gmwot =

∑

t∈T
γ

h1h2
gmwo 7h2t , h1 ∈ H, h2 ∈ H (23)

On each day from Monday to Friday, no more than νh1h2
gmwot operators should work,

among those with shifts (h1, h2) on the weekend:

∑

h∈Hmwd

γ
h1h2
gmwodht = ν

h1h2
gmwot

g ∈ G,m ∈ S2 ∪ S3, o ∈ O, t ∈ T , d ∈ {1, . . . , 5} , w ∈ Wm (24)

Another constraint ensures the synchronization of working shifts over the weekend
for operators with contracts belonging to S3 and working in shifts h1 and h2 during
the week end:

γ
h1h2
gmwo6h1t = γ

h1h2
gmwo7h2t g ∈ G,m ∈ S3, w ∈ Wm, o ∈ O, t ∈ T , h1, h2 ∈ Hmwd

(25)
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A decomposition and rounding heuristic

For real-world instances, our ILP formulation typically contains millions of variables
and constraints. For example, setting a time horizon of |O| = 4 weeks with time slices
of L = 30 min, the time indices (o, d, t) range over |O| · |D| · |T | = 4 · 7 · 48 = 1 344
combinations of values. The skill profiles can be as many as |G| = 60, with a dozen
types of contracts (|M| = 12), having a few shift patterns each (|Wm | ≈ 1−3) and
|H| ≈ 7−8 shifts. Consequently, the number of z variables explodes. In many cases,
simply generating the model exhausts the memory available on a normal PC, while
it is impossible to solve in a reasonable time even its continuous relaxation, not to
mention the full problem.

Our approach in Cordone et al. (2011) concerned a much less detailed and much
smaller version of this problem. In that version, the operators followed the same shift
pattern week after week during the whole time horizon. As a consequence, the con-
tinuous relaxation of the original problem could be solved, and its fractional solution
could be easily rounded while respecting all of the constraints. In the version here
considered, the fundamental z variables depend also on indices o and w, and must
respect complex equalities which model the distribution of shift patterns. This makes
it impossible to directly extend the original rounding procedure to the new problem at
hand.

However, we remark that the objective function (1) is a sum of terms referring to each
profile g ∈ G, and that very few constraints actually link the different profiles. Hence,
we resort to decomposing the global problem into |G| single-profile sub-problems.
Then, we sort these sub-problems suitably and solve their continuous relaxations.
Starting from the relaxed solution, we apply a rounding heuristic whose subsequent
steps focus on variables which correspond to different levels of detail. While the upper
levels can be solved by directly rounding the variables, the lower ones require a gradual
iterative approach, because the corresponding variables are linked by the more strictly
interrelated constraints, and a one-step rounding often yields an infeasible solution.
Section 3.1 discusses the decomposition phase, while Sect. 3.2 deals with the rounding
phase applied to each sub-problem.

Model decomposition

Only three sets of constraints extend over different profiles of G. Constraints (4) limit
the number of operators simultaneously present in the call center, constraints (16) limit
the number of operators assigned to each contract, constraints (5) limit the number
of operators who start working in each time slice. All three constraints can be inter-
preted as the consumption of a limited resource. However, they have different levels
of criticality, and the complexity to satisfy them is also very different.

Constraints (5) are easily taken into account by considering profiles in a given order,
solving the single-profile sub-problems and keeping track of the residual number of
workers left for each contract m ∈ M and starting time slice t ∈ T . Of course, the
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final solution depends on the order in which the sub-problems are solved. To account
for this, we deal first with the most required profiles, that is we sort the profiles by
non-increasing values of their total demand

∑
odt fgodt .

The same ordering is useful to take care of constraints (16) as well. These, however,
are much more limiting, because they relate profiles and contracts: when V max

m opera-
tors have been assigned to contract m, this is forbidden for all the remaining profiles.
It is easy to miss the optimal solution for this reason, because the first profiles tend
to exhaust the “resource”V max

m . To avoid that, we limit the number xgm of operators
allocated to the current profile, enforcing constraints (16):

xgm ≤ V max
m −

∑

g′
<g

xg′ m m ∈ M, g ∈ G

but we also introduce a limit on xgm based on the fraction of the total demand associated
with each profile g:

xgm ≤
⎡

⎢⎢⎢⎢

∑
dto

fgdto

∑
gdto

fgdto
V max

m

⎤

⎥⎥⎥⎥
m ∈ M, g ∈ G (26)

Constraints (4) are also critical: if the call center is full in a time slice, the
decomposition easily tends to assign no operator to the remaining profiles in the
surrounding time slices. To avoid that, we replace capacity� with a reduced capacity
�′ = max(2�/3,� − |G|��). Each time this reduced capacity is filled, the total
capacity for the following profile is set to �′ + ��, until it reaches the maximum
value�. The increase step�� must be defined by the user but usually, if the profiles
are ordered by decreasing values of their total demand (

∑
odt fgodt ), it is sufficient to

set �� = 1, as we did in our tests.

Multi-level iterative rounding procedure

Algorithm 1 outlines the procedure used to process each single-profile sub-problem.
Set F is a collection of pairs composed of each variable fixed in the rounding
process and its corresponding value; F is initially empty. For three times, procedure
SolveContinuousRelaxation solves the continuous relaxation of the sub-problem and
slightly different rounding procedures (namely, Round_x, Round_n and Round_ν)
manipulate the relaxed solution to derive integer values for some variables of the
model. When the variables are rounded, they are also tentatively fixed: the variable-
value pairs returned are inserted into F . At each step, procedure SolveContinuous-
Relaxation respects the fixings inherited from the previous steps, and the follow-
ing rounding procedure operates on a different set of variables and with a different
strategy:
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• Round_x rounds the xgm variables to the closest integer value.
• Round_n performs a more careful rounding on the ngmwo variables, because they

must satisfy equalities (11) and (13), which link them to the xgm variables. As
already discussed, (14) cannot be strictly satisfied in the general case and is thus
only satisfied approximately as permitted by integer values of ngmwo variables. For
these variables, any simple rounding criterion is likely to yield an infeasible solution;
hence, we explore systematically the roundings, stopping at the first feasible one
for the sake of efficiency.

• Round_ν rounds the synchronisation variables νgmwot and νh1h2
gmwot respecting the

following relation with the n variables:
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ngmwo =
∑

t∈T

∑

h1∈H

∑

h2∈H
ν

h1,h2
gmwot

which is obtained combining constraints (10), (20) and (24). To satisfy it, we com-
pute kgmwo = ∑

t,h1,h2
(ν

h1,h2
gmwot − 
νh1,h2

gmwot�),we round up the kgmwo variables with
the largest fractional part, and we round down the remaining variables.

Notice that, as long as the z variables remain free, it is rather easy to modify the values
of x , n and ν to satisfy the constraints imposed on them. Therefore, the continuous
relaxation solved at each step is always feasible.

The situation changes when we start to operate on the z variables. Due to the many
interrelated constraints involving them, this phase is quite sensitive and requires to
monitor with care the current solution, detecting infeasible roundings and backtracking
as soon as one occurs. At each iteration, procedure Round_z finds integer values for
the z variables: it rounds up all those with a fractional part (z − 
z�) ≥ 1 − T1,and
rounds down those with (z − 
z�) ≤ T0 and with z ≥ 1 (see the pseudo-code in
Algorithm 2). The thresholds T0 and T1 are defined by the user in (0, 1). Notice
that we delay the rounding of the variables with 
z� = 0, because their number is
often significant and fixing all of them to zero in early stages of the process would
excessively constrain the problem. After introducing the new fixings in list F , we solve
the rounded continuous relaxation and check whether it is feasible. If it is, the two
thresholds T0 and T1 are increased by a user-defined amount�T ∈ (0, 1), so that more
variables will be rounded in the next iteration. If the relaxation is infeasible because
the rounding has been too harsh, we backtrack, we retrieve the last feasible solution
with the corresponding thresholds, and round up the single fractional z variable with
the largest fractional part. In case of failure, we try to round down the single value
with the smallest fractional part, and so on, moving at each failure to the following
variable, until we obtain a feasible solution (this is not reported in the pseudo-code,
for the sake of simplicity).

To cut down the computing time as much as possible, we terminate this cycle either
when T0 + T1 ≥ 1, which implies that all z variables have been rounded, or when the
number of fractionary z variables for each profile, contract and week is not larger than a
user-defined parameter q. This is chosen small enough to guarantee that the systematic
rounding performed by Round_zγ , which also terminates at the first feasible integer
solution, is almost instantaneous.

A GRASP algorithm

The total time needed by the Rounding heuristic to treat some of the biggest instances
is rather large, even using a powerful solver such as CPLEX as an auxiliary routine.
Therefore, we also designed an alternative heuristic approach, to investigate whether
we could find solutions of comparable quality in shorter time. We opted for a GRASP
heuristic, to combine the simplicity and efficiency of greedy heuristics with the power
of randomization in correcting bad choices made in the early steps of the computation.
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GRASP is a multi-start meta-heuristic which alternatively builds starting solutions
with a randomized greedy heuristic, and improves them with local search (Feo and
Resende 1989). With the aim of reducing computing time as much as possible, we
devised a very simple greedy heuristic, which adds one operator at a time to an empty
solution, deciding its profile, contract and work shifts so as to reduce as much as
possible the objective function, but focusing, in particular, on the peaks of the demand
profile. The local search performs a fine tuning of the daily schedule, moving the
starting time of each work shift so as to improve the objective. The two procedures
alternate for a given number of iterations, or a given time, and they eventually return
the best solution found during the whole process.

Greedy randomized procedure

The pseudo-code of the greedy randomized heuristic is shown in Algorithm 3. The
procedure scans all profile-contract pairs (g,m) ∈ G × M for which it is feasible
to increase the corresponding variable xgm , still respecting the maximum numbers of
operators umax

gm and V max
m imposed by constraints (15) and (16).

Procedure GreedyShiftPlan, which is described in more detail below, computes the
best distribution of shifts along the time horizon for an additional operator with profile
g and contract m. If the augmented solution S′ is feasible and improves the objective
function (1), it is included in a candidate list L . This list is then reduced to a restricted
candidate list RC L , keeping only the best h elements. Parameter h is defined by the
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user; in our experiments, we set h = min{5, |L|}, where |L| ≤ |G| · |M| is the original
number of candidates. Then, the heuristic replaces the current solution S with one
of the candidates from RC L , selected by procedure RandomChoose. If h > 1, the
choice is, in fact, random and follows a probability distribution meant to favor the best
alternative, without forbidding the other ones. Specifically, the distribution assigns a
50 % probability to the best alternative and a uniform probability 0.5/(h − 1) to the
following ones. When the candidate list L becomes empty, this means that no feasible
improving solution can be found. Then, no more operators are introduced and the
heuristic terminates returning the current solution S.

Efficient generation of the candidates Notice that it is not necessary to evaluate all
profiles and contracts at each iteration, as reported in the pseudo-code. In fact, the
variation of the objective function induced by an additional operator often remains the
same iteration after iteration. Instead of recomputing it always from scratch, it can be
saved once and retrieved several times. The profile-contract pairs (g,m) which must
be re-evaluated because the saved variation is no longer valid are those in which profile
g has been used in the last iteration, or in which the additional operator could violate
the coupling constraints on the maximum number � of operators simultaneously
working (4) or on the maximum number vm′t of operators simultaneously starting to
work (5). When a coupling constraint becomes active in a certain time slice of a certain
day and week, it simply forbids to assign any further operator to the corresponding
contract m at that precise time slice.
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Generation of the greedy shift plan Procedure GreedyShiftPlan(g,m, S) solves a
restricted version of model (1)–(25), in which a specific (g,m) pair has been selected.
Moreover, the previous iterations of the constructive procedure GreedyRandomized
have already assigned some workers to their shifts: if ȳgodt is the working force with
profile g assigned to time slice (o, d, t), the demand is reduced accordingly from
fgodt to fgodt − ȳgodt . Since we add one worker at a time, some constraints of the
overall model are not active and, therefore, can be ignored. Finally, all the (g,m)
pairs for which variable xgm cannot be increased without reducing other variables are
ignored.

To determine the detailed shift schedule for the additional operator, instead of
solving the reduced formulation exactly, we use the greedy method described in Algo-
rithm 4. This combines the optimization of the primary objective function with a
secondary one, focused on the peaks of demand. This procedure operates in three
nested loops:

• The outer loop scans all possible sequences of patterns (w1, . . . , w|O|): each
sequence has a length equal to the number of weeks in the time horizon, |O|, and
assigns a pattern w ∈ Wm to each week. Though potentially very large, in practice
the number of such sequences is strongly limited by the size of the sets Wm , by the
number smw of weeks in which a shift pattern w can be used and by the constraints
imposed by the current partial solution S.

• The intermediate loop scans the weeks in the time horizon.
• The inner loop scans all possible sequences of seven shifts (h1, . . . , h7), one per

day, that are compatible with the constraints imposed by the shift pattern wo fixed
in the current week o (e. g., hd ∈ Hmwod ) and by the current partial solution S.
These constraints strongly limit the number of such sequences. For each possible
sequence, procedure ChooseTimeSlices selects, as discussed in the following, a
starting time slice for the shifts of the additional operator and, if required, for the
associated lunch breaks.

Each feasible solution is evaluated according to the main objective function (1), and
the best known one is returned in the end.

Procedure ChooseTimeSlices takes into account the synchronization constraints. It
receives a subset D′ of days in which all shifts must be synchronized and returns a
starting time slice which will be adopted in all days of the subset. If no synchroniza-
tion is required (m /∈ S), the procedure is applied independently to each day of the
week; if the whole week must be synchronized (m ∈ S1), it is executed only once with
D′ = {1, . . . , 7}; if only the workdays must be synchronized (m ∈ S2), it is executed
three times: on the five workdays, on Saturday and on Sunday; finally, if the workdays
and the week end are independently synchronized (m ∈ S3), it is executed twice. The
procedure scans all time slices in which the work shift, and possibly the lunch break,
of the additional operator can feasibly start. Among all these alternatives, it selects
that which minimizes the maximum remaining unsatisfied demand fgodt − ygodt in
any time slice. In case of ties, it minimizes the total unsatisfied demand. The advan-
tage of using this min–max objective function, before the original min-sum objective
function, is to schedule operators so that early iterations tend to flatten the curve of
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the residual demand. This is necessary to address the peaks of demand as early as
possible.

Local search procedure

Algorithm 5 provides the pseudo-code of the LocalSearch procedure, which aims to
improve the solutions generated by the greedy randomized heuristic. The local search
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neighborhood includes all the solutions that can be obtained from the current one by
moving a work shift from a time slice to another one in the same day. If the move
concerns a work shift of an operator with a contract requiring synchronization, all the
corresponding work shifts of the same operator in the affected days must be modified
accordingly. The same is done for re-scheduling the lunch breaks corresponding with
the moved work shift(s). As in the lower level of the greedy procedure to determine the
shift schedules, the objective combines the main objective function (min-sum) with a
secondary one (min–max) that aims at flattening the peaks of unsatisfied demand. The
procedure scans the current solution week by week, day by day and time slice by time
slice; for each profile g, contract m and shift patternw, for each week o and day d, the
procedure tentatively moves the corresponding work shift h from the current starting
time slice t to that which minimizes the maximum residual unsatisfied demand. If the
value of the objective function improves, then the move is made permanent, i.e. the
current solution is updated. The exploration strategy follows, therefore, a first-improve
strategy: as soon as an improving move is found, it is immediately performed. The
procedure is iterated until no improvement can be found.

Experimental results

To compare the efficiency and effectiveness of the Rounding heuristic and of the
GRASP heuristic, we applied both of them (1) to real instances provided by the
consulting company StudioZeta and (2) to a benchmark set of randomly generated
instances. Both algorithms have been implemented in C language; the Rounding
heuristic exploits CPLEX (version 10.4) to solve the continuous relaxation of the
decomposed sub-problems. The technical characteristics of the computer used for the
experiments are the following:

• Bi-processor Intel Pentium DC T4500 at 2.3 GHz.
• 4 GB of RAM (and Swap partition of 2 GB).
• Operating system Linux Debian.
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Real instances

We were provided with four very large real instances coming from different call
centers:

• instance 1 involves |G| = 13 skill profiles, |M| = 4 contracts (all belonging to
subset S3), H = 4 working shifts, with a single weekly shift pattern (|W| = 1)and
a time horizon of |O| = 6 weeks; parameter α = 0.4.

• instance 2 involves |G| = 3 skill profiles, |M| = 13 contracts (7 of which belonging
to subset S1 and 6 to subset S3), H = 8 working shifts with a single weekly shift
pattern and a time horizon of a single week (|O| = 1); parameter α = 0.25.

• instance 3 involves |G| = 6 skill profiles, |M| = 3 contracts (one belonging to
subset S1 and two belonging to subset S2), H = 5 working shifts with |W| = 2
weekly shift patterns and a time horizon of |O| = 4 weeks; parameter α = 0.53.

• instance 4 involves |G| = 61 skill profiles, |M| = 12 contracts (4 of which belong-
ing to the synchronized subset S1, 2 to S2 and 2 to S3), H = 6 working shifts,
with a single weekly shift pattern (|W| = 1) and a time horizon of |O| = 4 weeks;
the demand profile here extends over 24 h, while the other instances have a more
traditional profile; parameter α = 0.5.

The two competing approaches have different and complementary features. In the
Rounding heuristic, the running time cannot be tuned by the user. If terminated pre-
maturely, the heuristic does not provide a complete solution. Since it is deterministic,
when run several times it always provides the same solution. On the contrary, the
GRASP heuristic visits several solutions: its running time can be tuned by setting the
number of iterations and if it is terminated prematurely, it provides the best solution
found so far (if at least one iteration has been completed).

To compare the two heuristics, we ran the Rounding heuristic first and we saved its
result and the computational time required. Then, we ran the GRASP heuristic for the
same computational time on the same machine.

Table 1 summarizes the results obtained by both algorithms for the real-world
instances. The first column contains the index of the instance. The second column
contains a benchmark value; this is the objective value of the relaxed model of the
Rounding formulation. We remark that this is not the value of the linear relaxation of
the full problem, which is intractable as such (it could not be stored in the memory of
the computer); instead, the benchmark is given by the sum of the optimal values of the
linear relaxations for all profiles g ∈ G computed sequentially (not independently).
We remark that this benchmark is not guaranteed to be a valid lower bound. However,
in practice, it is likely to be a lower bound, and in all our tests it was always better than
the heuristic values. The third column gives the CPU time in seconds needed by the
Rounding heuristic and the sixth column gives the number of iterations the GRASP
performed during the same time limit. The fourth and seventh columns contain the
values of the objective function for the solutions found by the Rounding and the GRASP
heuristic (the best of the two is in bold), while the fifth and eighth columns report the
percentage gap with respect to the benchmark.

The two algorithms find similar solutions in two out of four cases; in one case, the
GRASP algorithm is significantly better, but in another case it is significantly worse.
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Table 1 Comparative results of the two heuristics on the four real instances (CPU times are in seconds)

Instance Benchmark Rounding GRASP

CPU Obj. Gap (%) # iter. Obj. Gap (%)

1 2,117.00 408 2,117.00 0.0 30 2,151.00 1.6

2 121.03 939 385.50 218.5 36 802.25 562.9

3 1,463.34 2,598 2,223.00 51.9 26 1,826.60 26.9

4 36,084.60 57,045 39,523.50 9.5 19 41,622.00 15.3

The time required ranges from a few minutes to several hours; in that time, the GRASP
heuristic is able to perform roughly 20–30 iterations. This suggests that if the available
computational time is limited, it is more advisable to resort to GRASP.

Figure 1 shows the profile of the total number of operators on a sample day of the
time horizon, obtained applying to the four real instances, respectively, the Round-
ingheuristic (on the left) and the GRASP heuristic (on the right). Each profile is com-
pared to the profile of the total demand: the workforce is in bold lines, whereas the
total demand is in light shade. For both algorithms, the profile of the offer follows
with good approximation the profile of the demand, with the exception of instance 2,
for which the GRASP heuristic provides an excess of operators, confirming the bad
value of the objective function. This is probably due to a tendency of the GRASP to
introduce suboptimal choices at an early stage and build on them, which is especially
influential on instances where several operators are chosen for each (g,m) pair.

To evaluate the effect of randomness of the GRASP heuristic, we have performed
1,000 runs on the two smallest real instances (1 and 2), as this analysis would have
required too much time for the other ones. We remind that randomness affects the
selection of the (g,m) pair to add to the solution at each step. We found the results
reported in Table 2 for the average value μ, the standard deviation σ and the relative
standard deviation σ/μ of the objective function. These results suggest that the effect
of random choices on the final value of the objective function is limited to a small
percentage difference, so that a single run of the algorithm is likely to provide stable
results.

We also remark that, even for instances where the final value of the objective
achieved by the two methods is almost the same, the solutions usually exhibit strong
qualitative differences. This holds even considering the solution on the strategic level
that is the distribution of the operators among the available contracts (expressed by the
quantities

∑
g∈G xgm for each m ∈ M). In fact, the values of these quantities in the

solutions provided by the two alternative methods show differences of up to 100 %.
Table 3 provides for each instance (row) and each available contract (numbers sepa-
rated by commas) the ratio between the difference and the maximum of the quantities
returned by the two heuristics. This suggests that the model considered allows for a
large freedom in contract selection, while keeping similar effectiveness in fitting the
forecasted demand.

Finally, it is interesting to discuss the dependence of the results on the parameter α,
which expresses the relative weight given by the decision-maker to the two components
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Fig. 1 Comparison between the total workforce (bold line) and the total demand (light shade) for the
Rounding heuristic (left) and the GRASP heuristic (right), on the real instances (1–4, from top to bottom)

Table 2 Average, standard
deviation and relative standard
deviation of the objective
function on the two smallest real
instances

Instance μ σ σ/μ

1 2181.9 22.76 0.01043

2 829.7 17.81 0.02147
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Table 3 Percentage difference between the number of operators assigned to each contract by the Rounding
and the GRASP heuristics on the four real instances

Instance |M| Difference in the distribution of operators (%)

1 4 16.7, 66.7, 50, 50

2 13 100, 46.6, 40, 100, 0, 85.7, 84.6, 75, 0, 0, 100, 25, 30

3 3 0, 5.3, 10

4 12 100, 44.4, 50, 100, 0, 81.8, 84.6, 85.7, 100, 100, 100, 66.7
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Fig. 2 Dependence of the surplus, the deficit of operators and the overall objective function on parameter
α, in the solutions returned by the Rounding heuristic (full lines) and the GRASP heuristic (dashed lines)
on the real instance 1

of the objective function, that is the surplus and the deficit of operators, which approx-
imately correspond to the cost and the level of service. We have solved instance 1 with
both heuristics, setting parameter α to different values in {0.01, 0.25, 0.5, 0.75, 0.99}.
Figure 2 reports the results of these experiments: as expected, with α ≈ 0 the offer
profile

∑
godt ygodt exceeds the demand profile

∑
godt fgodt , with no deficit and a

large surplus of operators, whereas α ≈ 1 corresponds to the opposite situation:
the offer profile is smaller than the demand, with no surplus and a high deficit of
operators. We could not observe any dependence of the efficiency of the algorithms
on α.

Randomly generated instances

The benchmark random instances are based on the daily demand profiles shown in
Fig. 3. In turn, these derive from a suitable smoothing of the demand profiles of
instances 1 and 2. The rest of the data are randomly generated, partly based on the
features of the real instances and partly from uniform distributions, for the sake of
simplicity. In detail:
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Fig. 3 Profiles used for generating the daily request fgodt : on the left side the original request, on the right
side the interpolation used to generate the data.

• The number of profiles |G| follows a uniform distribution in {1, . . . , 10}.
• The number of weeks in the time horizon, |O|, is uniformly extracted from

{1, . . . , 4}, while we always set D = {1, . . . , 7} and T = {1, . . . , 48} (the time
slices are half an hour long).

• The demand profile fgodt is given by pg · N · Rand(0.8, 1.2)·profile(t), where N
is a random integer variable uniformly extracted from {10, 11, . . . , 50}, Rand(x, y)
is a random real coefficient uniformly distributed between x and y, profile(t) is
one of the two profiles mentioned earlier to reproduce a realistic evolution of the
demand along each day of the week; finally, the pg coefficients are real random
values uniformly extracted from [0, 1] for each g ∈ G and normalized so that∑

g∈G pg = 1.
• Parameter α is a random real value uniformly chosen in the range [0.2, 0.6].
• The number of contracts |M| follows a uniform distribution in {3, . . . , 10}. For

synchronized contracts, |S1| is uniformly distributed in {0, . . . , |M|}, |S2| in
{0, . . . , |M|−|S1|} and |S3| in {0, . . . , |M|−|S1|−|S2|}. The number of contracts
in Mfix is zero if | ∪m∈M Wm | ≤ 1, uniformly distributed in {0, 1, 2} otherwise.

• The number of weekly shift patterns |Wm | is uniformly distributed in {1, . . . , |O|}
for each m ∈ M.

• The limiting parameters�, vmt and V max
m are uniformly distributed in {N , . . . ,N +

5}, {10, . . . ,N } and {N /3,N /2,N }, respectively.
• The number of working shifts ranges from 2 to 6, and their length ranges from 4 to

9 h, i. e. from δh = 8 to δh = 18.
• The subset of shifts Hmwd is randomly extracted from H so as to guarantee that

the rest shift (h = 0) and at least another work shift are available; we then set the
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Fig. 4 Computational time in seconds required by the Rounding heuristic (left) and the GRASP heuristic
(right) with respect to the size P = |G| · |O| · |H| ·∑m∈M |Wm | of each random instance, with logarithmic
coordinates

number Nmwh exploring the subsets Hmwd for all days d ∈ D, so that we make
sure that the required set of shifts over each week is feasible. We also make sure
that there is at least one and no more than four resting days over the week so as to
mimic realistic types of contracts.

• The subsets of time slices Tmwdh ⊂ T are randomly generated with |Tmwdh | in
{6, . . . , |T |/3 + 6}. For synchronized contracts, we harmonize all of the Tmwdh for
every (d, h) pair so as to be sure that we can synchronize effectively.

• The maximum distance between 2 days of rest is 
m = |D|, that is one week, for
all contracts.

• The shifts with δh < 14 have no lunch breaks; the length of the lunch breaks is
πmh = 1 (half an hour) for 7 h shifts (δh = 14), and πmh = 2 (1 h) for longer shifts.
When a lunch break is expected, it must start at least ηmht = 2 time slices (1 h)
after the beginning of the shift, and at least μmht = 4 (2 h) before its end.

The structure of these instances is very complex and several parameters contribute
to its definition. In particular, contrary to what usually occurs in standard optimization
problems, it is not easy to identify one or two parameters which express the size of the
instance. We have, therefore, generated a benchmark set of 50 instances as described
above. Since our preliminary results indicated that we had generated instances with
characteristics favoring the GRASP algorithm, we completed our set with 20 instances
that differ from the first 50 through the new parameter ranges:

• N is uniformly extracted from {50, . . . , 70},
• |G| is uniformly extracted from {1, . . . , 6},
so as to avoid values of the variables xgm too close to 1.

We have analyzed a posteriori the computational time required, to classify the
instances into groups of increasing size. This analysis shows that the product P =
|G| · |O| · |H| ·∑m∈M |Wm | is highly correlated with the execution time. The log–log
plot in Fig. 4 provides, on the left-hand side, the computational time required on each
instance by the Rounding heuristic as a function of P . A linear fit of this plot gives a
dependence of the running time on P1.3, with a correlation coefficient r2 = 0.89.

Each single iteration of the GRASP heuristic also exhibits a dependence of the
computational time on P , as reported in the log–log plot in the right-hand side of
Fig. 4. In this case, the dependence is on P0.7, which points to a better scalability
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Table 4 Computational results of the Rounding and the GRASP heuristics on the random instances

Instance class CPU (s) Rounding GRASP

P Gap (%) Gap (%) # it

[0; 50] 37.78 2.1 2.7 45.9

[51; 100] 131.13 2.8 17.7 37.8

[101; 150] 303.22 10.2 6.6 47.0

[151; 300] 502.17 14.1 9.4 37.7

[301; 500] 989.58 11.3 3.9 80.5

[501; 1000] 4,137.56 10.4 18.8 126.7

[1000;+∞] 7,649.00 13.8 4.7 364.3

All 1,296.73 8.6 9.9 77.4

of the GRASP algorithm. However, the correlation is much less pronounced, as the
correlation coefficient is only r2 = 0.38.

On the basis of the previous results, we have assumed the product P as a meaningful
measure of the size of the instances, and classified the 70 generated instances into 7
classes of approximately 10 instances each. Table 4 contains the average results for
these classes. Each class corresponds to a different row, and the last row reports the
average results on the whole benchmark set: the first column shows the range of P for
the instances of the class, the second one the average computational time in seconds,
the third and fourth columns the average percentage gap with respect to the best known
solution. The last column provides the average number of GRASP iterations performed
in the allotted time. As for the real instances, the computational time required by the
Rounding heuristic has been measured and the same time has been assigned to the
GRASP heuristic, to achieve a fair comparison.

The average gap, in particular, on the larger instances, suggests that the GRASP
heuristic has a slightly better performance. Such a conclusion, however, is not sup-
ported by statistical tests. Indeed, we have applied Wilcoxon’s matched-pairs signed-
ranks test (Wilcoxon 1945) to the values of the objective function computed by the
two algorithms on the 70 random instances. The test suggests that no clear dominance
can be established between them.

However, a further analysis reveals an interesting dependence of the quality of the
results on some features of the instances. More specifically, we observed that instances
in which the xgm variables assume very small values tend to be solved more effec-
tively by the GRASP algorithm than by the Rounding heuristic. This is not completely
unexpected, as the rounding operations are necessarily more arbitrary and error-prone
when performed on small values than when performed on large ones, whereas the
GRASP heuristic works precisely optimizing the schedule of single operators with
respect to the demand profile.

Of course, it is not very useful, though interesting, to identify a dependence of the
results on features of the final solution (the average value of xgm), which is unknown
a priori. However, a similar correlation can be found considering, instead of xgm the
ratio � = N /(|G| · |M|) between the parameter which determines the peak of the
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Fig. 5 Distribution of the percent gap of the Rounding heuristic (circles) and the GRASP heuristic (triangles)
with respect to the best known solution, as a function of the parameter N /(|G| · |M|)

demand profile in each instance and the product of the number of profiles and contract
types. This index approximately describes the average number of operators required
for each profile and contract to satisfy the demand. Figure 5 displays the gap between
the best and the worst solution as a function of� for each instance: the symbol indicates
which algorithm produced the worst solution; algorithm Rounding is represented by
circles while the GRASP is represented by triangles. This figure illustrates the effect of
parameter �. For our generated instances, this parameter was fixed by us to generate
consequently the demand; however, it can also be easily extracted from the raw data by
computing the average value over the time horizon of the highest peak in the demand
maxt∈T {∑g fgodt }.

As Fig. 5 suggests, when � ∈ [0, 1], the Rounding heuristic is at very clear dis-
advantage and there is no doubt that the GRASP heuristic is the way to go. A more
ambiguous zone is the range � ∈ [1, 3] where the latter tends to show signs of
weakness compared to the former. It is difficult to validate a clear dominance in
this zone; however, one can note that when the GRASP heuristic proves worse, it
tends to display a higher gap on average. Hence, it makes sense to favor the Round-
ing heuristic, to be statistically on the safe side. However, for values of � > 3,
the Rounding heuristic takes over and dominates the competitor unambiguously. We
can thus identify two ranges of the parameter where an algorithm is highly recom-
mended over the other: for � ∈ [0, 1] the GRASP algorithm is better suited while
for � > 3 it is the Rounding algorithm that should be preferred. In between we rec-
ommend the comparison of the two heuristics, if the computational time available is
enough.

The absence of a clear dominance between the two algorithms, together with the
fact that rather frequently one of them has a clear advantage over the other, can be
explained by this dependence on the features of the instance, which allows the user
to choose which algorithm to use in each specific case, according to a measurable
index.
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Conclusions

We have proposed an extended model for simultaneous optimization of contract mix
and personnel scheduling in call centers, further extending a previous model described
in Cordone et al. (2011). The resulting ILP model is considerably broader in its
application, since it takes into account a large number of different contracts, even
characterized by apparently “exotic” features. In this model, we can accommodate
contracts with work-shifts of different duration, with limitations on their starting time
or the days in which they can be used, possibly synchronized in different ways, as well
as characterized by different possible shift patterns. Our model computes work-plans
that comply with all legal constraints on the workload imposed to each operator. The
model also includes lunch breaks scheduling.

The ILP model is very large and complex, with several mutually interacting con-
straints and integer variables. We designed two algorithms to solve it in a heuristic
way. The Rounding algorithm is based on a decomposition of the model and it iterates
the solution of the linear programming relaxation and an iterative rounding procedure.
The GRASP algorithm is based on a greedy solution of a simplified single-operator
model, and allows most problem instances to be solved in a few minutes and the largest
instances in a few hours. Our computational experiments provide evidence that the
two techniques are complementary to each other. We have also investigated indicators
that can be computed to characterize a specific problem instance giving useful a priori
indications on which algorithm is more likely to be more effective.

The two methods described in this paper have been implemented and used as a
tool for analysis in real consulting situations in the telecommunication industry, in
particular for call centers in a process of expansion and renovation, when trying to
determine the best contracts that need to be defined to improve the level of service
experienced by the customers.
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