

WÄRTSILÄ IN ITALY

COMPANY PRESENTATION

2015

- Wärtsilä has more than 180 years of experience in power generation on land and at sea
- We employ close to 18,000 people across the globe/132 nationalities
- Every third ship sailing the oceans is powered by Wärtsilä
- Our power plants produce 1% of the world's energy
- Services 24/7 globally, close to 200 locations in 70 countries

Financial highlights

MEUR	2014	2013	2012	2011
Order intake	5084	4 872	4 940	4 516
Order book at the end of the period	4530	4 426	4 492	4 007
Net sales	4779	4 654	4 725	4 209
Operating result ¹⁾	569	520	517	469
% of net sales ¹⁾	11.9	11.2	10.9	11.1
Earnings/share, euro	1.76	1.98	1.72	1.44

¹⁾ Figures exclude non-recurring restructuring items and selling profits

Wärtsilä Italia Management Team

Wärtsilä Italia Key Figures Year 2014

Deliveries More than 3400 MW

- 168 Engines
- 91 Thursters
- 56 Gear Boxes
- 16 CPP

Personnel 1260 Employees

Wärtsilä Product Portfolio 26, 38, 46, 46F, 46DF, 50DF, 50SG, LMTs, CPP, GB

Spare Parts Wärtsilä, Sulzer and GMT

Wärtsilä Italia 4-s Engine Product Portfolio

Wärtsilä Italia LMT - CPP - GEAR BOXES

Wärtsilä Steerable Thruster:

- L-drive and Z-drive
- **Fixed or Controllable Pitch Propellers**
- Customized arrangements and CFD design
- Diesel or electric drive ≤ 5,5 MW
- Underwater Demountable
- Ice Class available

Wärtsilä Retractable Thrusters

- L-drive and Z-drive
- Retraction system with cylinders or spindles
 - Electric driven ≤ 4,5 MW
- Ice Class available

Gear Boxes:

- Single or Double Input Gears ≤ 25 MW
- Horizontal and/or Vertical Offset
- 2-speed Gears* ≤ 13 MW
- PTI / PTO / clutches options

Propellers:

- Wärtsilä customized CFD design (4/5 blades) > 1 MW
- Bronze and Stainless Steel Controllable **Pitch Propellers**
- Stainless Steel Built-up Fixed Pitch Propellers
- Ice Class available

2-Speed Gears provide two selectable propeller speeds at 100% engine speed to allow multiple operational modes or reduced transit speed at high efficiency

THIS IS WÄRTSILÄ

ENERGY SOLUTIONS

SERVICES

Wärtsilä Marine Solutions Italy

- Sales & Sales support to owners and shipyards for marine solutions in Italy, Malta, Monaco and the Balkan area.
- Project Management for marine solutions.
- Solution Engineering for all Wärtsilä Italy products portfolio (2T excluded)
- Sales and project engineering of gas fuel systems
- Engineering support for propulsion products
- Delivery Management for Trieste products

Wärtsilä Energy Solutions Italy

POWER PLANTS

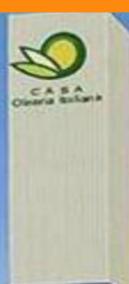
- Wärtsilä power generation solutions in ITALY for land based power plants
- Energy Solutions markets and sells:
 - Power generation equipment
 - Power generation systems
 - Turnkey power plants
 Power generation operation and services
 - Solutions are based on Wärtsilä prime movers for power plants from 1 MW up to 300 MW

POWER IN ITALY

WIT Energy Solutions Offices
WIT Service Centers

Power Plants

NG	\bigcirc
LFO	0
HFO	•
LBF	\bigcirc


181 power plants 1400 MW

Wärtsilä Italia power plants Mix
Engines: W34 (9L, 16V, 18V, 20V) W20 (6L, 9L) W32 (6L, 9L, 12V, 16V, 18V, 20V) W46 (18V)
Power: from 1 MW (Treviglio) to 120MW (Monopoli)
Scope: ED,EEQ and EPC solutions
Fuels: Natural Gas, Vegetable oil, Diesel oil, heavy fuel oil

Crude Palm Oil World's Largest plant

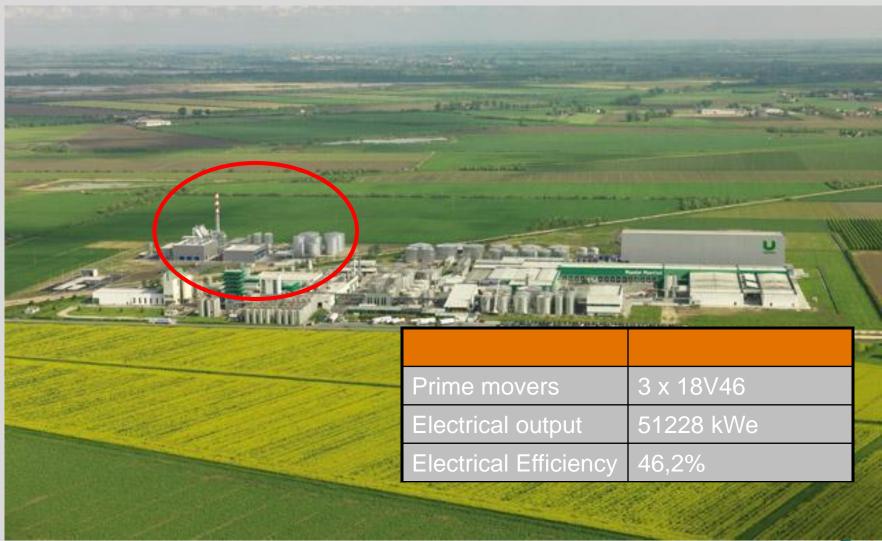
Italgreen Energ	gy - Monopoli
Prime movers	6x 18V46
Electrical output	102.457 kWe
Thermal Output	41.796 kWth
Steam turbine combined cycle	12.653 kWe
Total Efficiency	50%

Wärtsilä's CHP solutions – Linate Airport Tri-generation

WÄRTSIL

Wärtsilä's CHP solutions – ENI Headquarters S. Donato-MI

FANTONI POWER PLANT (3rd) 18V50DF



AGAM MONZA 2 x 9L34SG

Prime movers	2 x 9L34SG
Electrical output	8.686 kWe
Thermal Output	5.914 kWth
Electrical Efficiency	45,9%
Total Efficiency	87%

UNIGRA' Power plant

FRIEL ACERRA EPC CC

Prime movers	4 x 18V46 + ST
Net Plant Output	72.200 kWe
Total plant electrical efficiency	50,4 %

Wärtsilä Services Italy

In the marine and energy markets, Wärtsilä services supports its customers throughout the lifecycle of their installations by enhancing their business, optimizing efficiency and performance. We offer high quality expertise as a Total Solution Provider

 supplying components/spare parts (not only for Wärtsilä applications)

- long-term maintenance contracts
- reconditioning
- modernization solutions for propulsion systems

 environmental solution in compliance with the latest legislation

Wärtsilä Land and Sea Academy, Trieste Training Centre

Extensive training offering for ship and power plant operators and Wärtsilä's own personnel

WÃRTSILÄ

Profitable growth by focusing on three areas

The transition to sustainable and modern energy systems drives the demand for smart power generation. Economic and environmental reasons increase the growth potential for gas solutions in both end markets.

Environmental regulation and increased focus on optimised lifecycle efficiency create demand in the marine industry.

USE OF DYNAMIC SIMULATION IN ENERGY INDUSTRY: SOME REAL CASES IN WARTSILA ITALY

Paolo Pierdomenico Wartsila Italia S.p.A

© Wärtsilä

Summary

- I will **show a catalogue of simulation in Energy industry**, developed through real case experience and various types of simulation models.
- With the aid of simulation our Company has been able to:
 - design efficient production and business systems
 - validate and trade off proposed design solution alternatives
 - troubleshoot potential problems
 - improve systems performance metrics and consequently, cut cost, meet targets and boost profits.
- As important as simulation results, we got additional benefit through building up the model:

we develop the capacity to capture the functionality and the relevant characteristics of real systems and facilitates system knowledge, analyses, improvement, and optimization.

Why simulation of existing systems

- Is cheaper and more safe to test out scenarios on a computer than to do them in the real-life system:
 - Modify an existing plant is a fast, one shoot, expensive project
 - fix the design in the planning phase is cheaper than fixing a finished under-performing plant

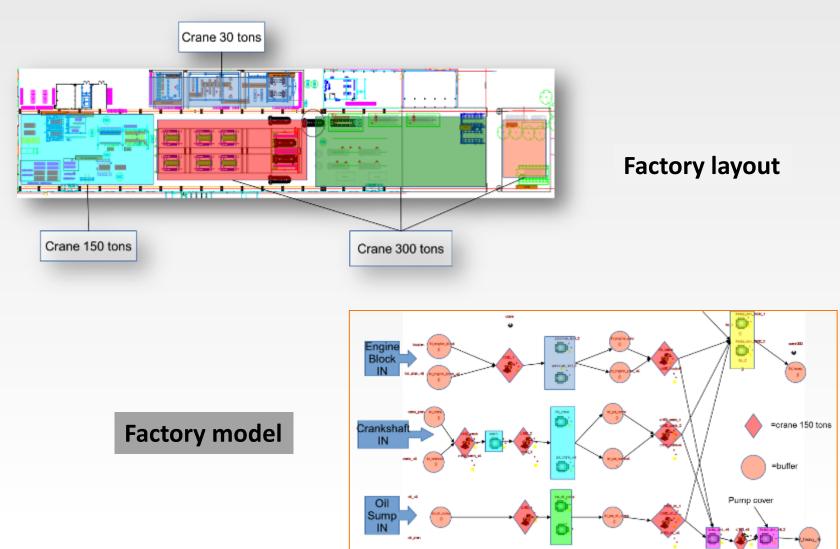
Why simulation of new system

- In some cases, it is not even feasible to observe the real-life system (i.e. when we simulate something that doesn't exist yet):
 - Planning a new 100 M€ production facility, would you rather just design, commission and see how it performs, or better simulate it to see how well your design works?

- In normal industry no simulation is (economically) 100% accurate:
 - simulation **model** is (considerably) simpler than the associated system
 - simulation model contain a number of assumptions
 - simulation model very often is based upon incomplete or uncertain data (garbage in, garbage out)
 - simulation model may even contain bugs or logic errors
 - the effort to obtain a higher accuracy is not economically useful

- There are many tools you can use to simulate
- My recommendation is to use a simple tool
 - Easy to built the model
 - Easy to use and program
 - Easy to analyse the output
- In our case we use WITNESS Software (© 2014 Lanner Group)

- Simulate to design a new factory to produce Diesel engines
- Simulate to innovate or improve an existing maching workshop for large components
- Simulate to support the production flow improvement in Wartsila Italy (from 3 to 1 building project)



- Scope was:
 - to evaluate if the number of overhead crane and production cell was sufficient
 - to evaluate the overall utilization rate of cranes and assembly stations

Factory Model

30 © Wärtsilä

Results

Report: W46 heavy assembly & main assembly busy percentage

	3+2	3,5+1,5	4+1	4+1,5
HP_46_1	79,1%	60,5%	39,3%	55,4%
HP_46_2	56,2%	40,2%	28,4%	40,1%
main_ass_46_1	94,9%	89,6%	63,1%	87,2%
main_ass_46_2	94,8%	86,6%	55,4%	83,5%
finished_W46	69	66	45	65

 In 3+2, 3,5+1,5 and 4+1,5 simulations we can see there is a bottle neck in W46 main assembly due to the input rate of W46 engine.

In the 3+2 simulation the bottle neck is stronger than the other cases, in fact we can see

in buffers slide that the buffer located upstrem of W46 main assembly called

bf_heavy_46 has a large store rate.

 In the 4+1 simulation the busy percentage of W46 main assembly is low so we could think to increase the W46 input rate

Report: testing, inspection, Painting &preparation busy percentage

	3+2	3,5+1,5	4+1	4+1,5
test_run_1	36,2%	41,9%	54,6%	43,1%
test_run_2	21,8%	35,2%	41,8%	31,1%
test_run_46	69,7%	69,4%	43,5%	67,4%
Ins_1	59,7%	69,2%	59,6%	70,6%
Ins_2	58,6%	57,1%	50,5%	63,3%
painting	70,7%	77,3%	74,5%	83,1%
preparation	80,4%	82,2%	76,4%	88,5%

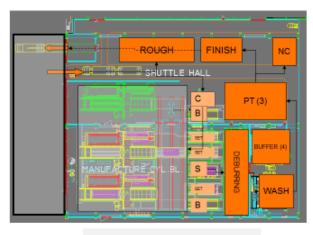
 In 3,5+1,5 and 4+1,5 simulations, the preparation station and to a lesser exten painting station has a high busy level due to the input rate of engines.

Furthermore, if we observ the preparation working time of engines we can perceive that W46 working time in preparation station is greater than W26/W32 working time, (3,75-12,5)hours against (30-36)hours so when W46 arrives in preparation station, it employs the activityfor a long time

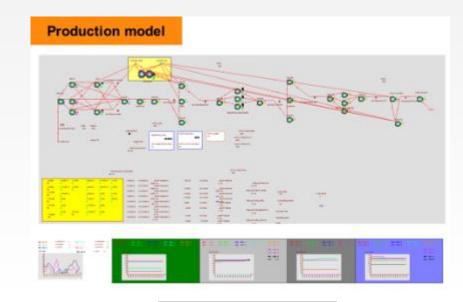
These are the reason of storing in bf_prep, especially in 4+1,5 simulation.

Report: cranes 150/300 tons busy percentage and day utilization

		Busy	Busy	Busy	Busy			Busy	Busy	Busy	Busy
Crane 150		32,7%	33,8%	34,2%	36,9%	Crane 300		57,3%	62,7%	63,8%	68,4%
		3+2	3,5+1,5	4+1	4+1,5			3+2	3,5+1,5	4+1	4+1,5
mean_utilization	[lifts/day]	6,35	7,04	7,06	7,71	mean_utilization	[lifts/day]	6,37	7,11	7,38	7,73
st_dev	[lifts/day]	4,41	4,81	3,98	4,50	st_dev	[lifts/day]	4,52	4,82	4,99	5,38


Simulation to improve an existing plant

 how improve the production level in machining of large components

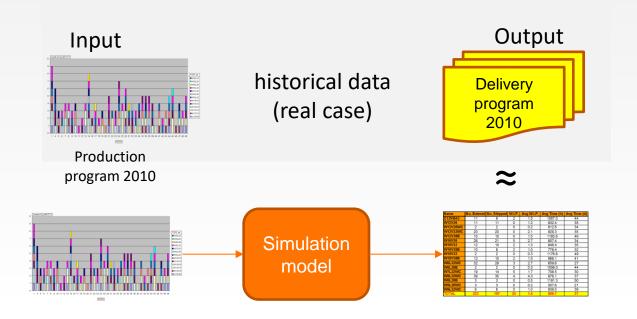

Reference data

MODEL SETTINGS

- 14 working cells: according to AS IS layout
- 2008 production plan + warm up period: 1 year of production
- Arrival date: 6 weeks before due date date

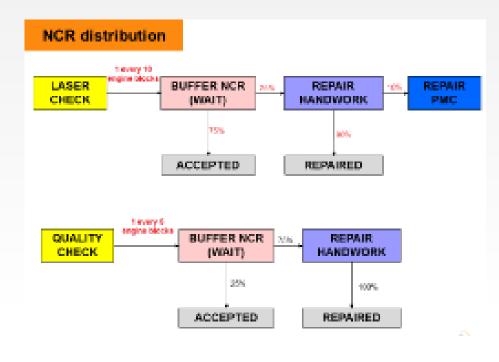
Factory layout

Factory model


Status:

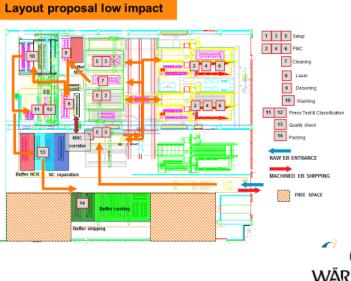
32 © Wärtsilä

Revision:


 In this case was possible to improve the accuracy of the model by using historical data

Incident simulation

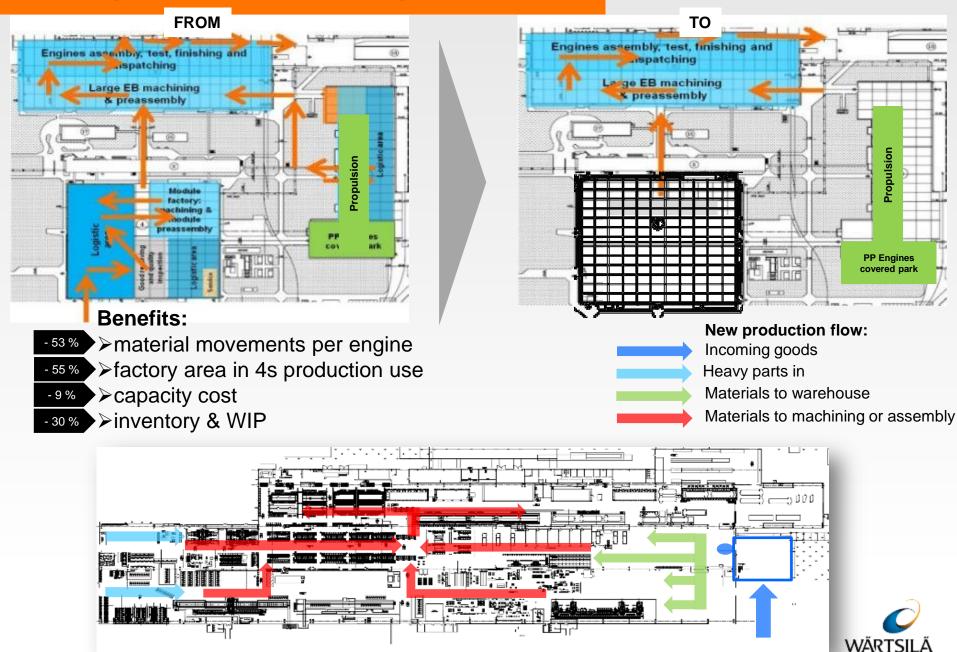
- Because of good reliability of the model we decide to introduce also 'incidents' in the model for the main machines:
 - utilization rate with triangular distribution for MTBF and MTTR of main machines
 - Non conformity in production: distribution according to historical data



Suggestion from simulation

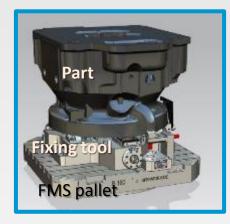
- We simulate 5 different options (Case 1-5) with different CAPEX, different efficiency and resources
- we selected the 'low CAPEX' case and
 - increase resources in manual activity an
 - reduce waiting time
 - use few (selected) machine in 2 shifts
 - advance and detail planning of and all ac
 - reduce NCR: invest in higher quality leve

Dutput re	esults					
		CASE 1	CASE 2	CASE 3	CASE 4	CASE 5
PROD. PLAN	2010		259 EB - 1	13214 hours n	nachining	
NCR	STATION	na	2	na	na	2
NGR	Utilization (% on shift)	-	28%	-	-	32%
PMC	STATION	2	2	3	3	3
F MG	Utilization (% on \$760 h)	70%	69%	53% C	53%	57%
LASER	STATION	1	1	1		
LABER	Utilization (% on shift)	13%	14%	15%	15%	16%
DEBURRING	S TA TION	3	3	3	3	3
DEBORRING	Utilization (% on shift)	23%	23%	27%	27%	26%
PRESS TEST	STATION	2	3	2	3	3
FREAD TEAT	Utilization (% on shift)	47%	39%	54%	45%	46%
	AVG CASTING\$ (pcs)	20	25	0	0	1
	AVG SEMIFINISHED (pos)	3	0	0	1	0
BUFFERS (pos)	AVG FINISHED (pos)	0	0	0	0	0
	AVG NCR (pcs)	-	2			2
	AVG SHIPPING (pcs)	1	1	2	2	2
CLASS WT	distribution (hours)	1-36	4-60	1-36	4-60	4-60
	MACHINING TEAM	4	4	4	4	4
	Utilization (% on shift)	46%		52%	52%	57%
RESOURCES	DEBURRING TEAM	9	9	9	9	9
	Utilization (% on shift)	36%	- 36N		41%	41%
	NCR TEAM	na	2	na	na	2
	Utilization (% on shift)	-	43%	-	-	47%
SHIPPED	(pcs)	234	231	267	266	268
WIP	(pcs)	42	50	7	7	11
LEAD TIME	MEAN (days)	54	60	17	16	20
LEND TIME	MAX (days)	64	81	42	42	43

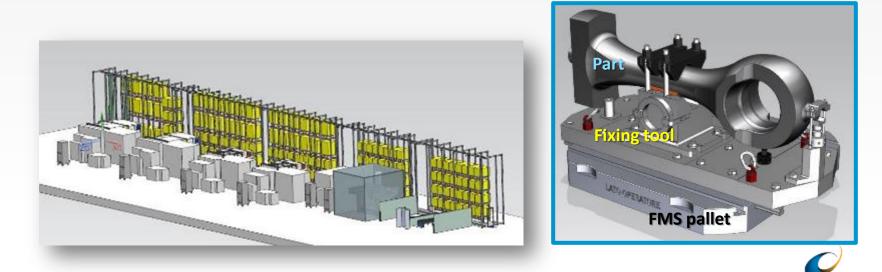


2016 WARTSILA ITALY 'FROM 3 TO 1 BUILDING PROJECT'

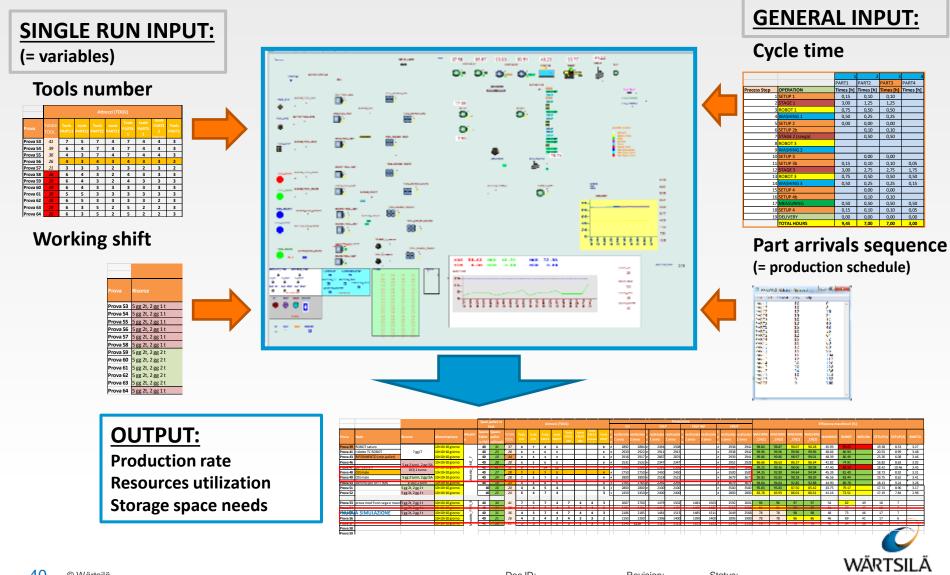
DCT production flow improvement


Doc.ID:

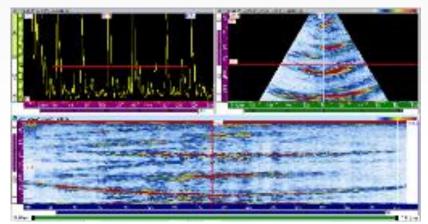
- FMS system
- Phase Array Ultrasonic system SIMULATION
- Internal logistic flow Simulation_1B



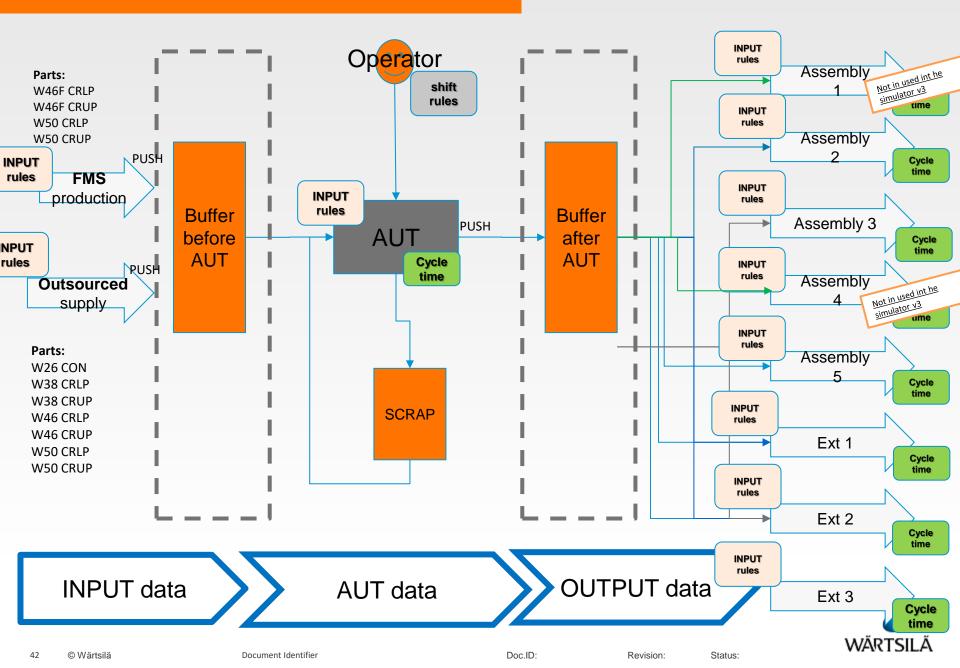
FMS optimization supported by simulation model


- <u>Objective:</u> evaluate different scenarios of number of tools/pallet and storage locations in the system, in order to define the most effective one
- <u>In scope</u>: define production output and machine efficiency, by optimizing resources
- <u>Basic assumptions</u>: max output condition only considered (no disruption taken in consideration, such as breakdown, failure, absenteeism)

WARTSI



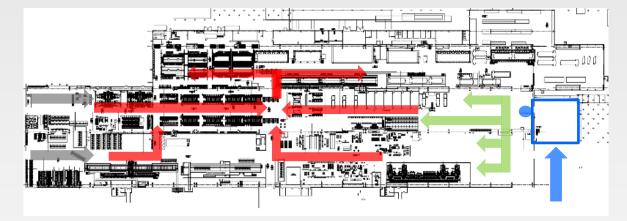
Simulation description

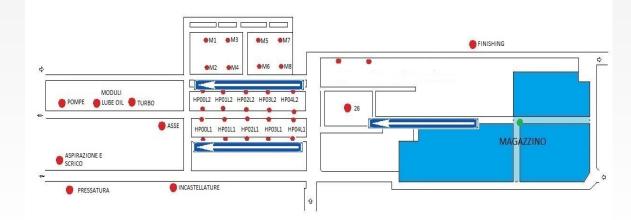

- 1. We will invest in automated phased array UT equipment for all steel parts to detect material defects (9 different parts)
- 2. Parts are produced in house and from subsupplier with different process:
 - Continuos flow
 - Batch production

Total volume: 16000 parts/year: How design WAREHOUSE before and BUFFER after?

Simulation Model (Version 4)

CONCLUSION


- Storage needs are highly impacted by low rotating parts (component) but those could be managed as special events
- AUT inspection batch dimension could be reduced from 50 to 20 pcs without impacts on the storage needs and machine performance
- Setup times and calibration time can impact on machines productivity and so increase storage space needs, in both the buffers of the machine.
- The more representative results to dimension the buffers are:
 - Before AUT: 49 pallets storage places (or 170 pcs)
 - After AUT: 95 pallets storage places (or 330 pcs)
 - No special needs for rejected parts if checked regularely



Internal logistic flow Simulation_1B

Simulate the traffic of forklift inside the factory in the new configuration (2016)

- Goals to be achieved:
 - Pallet stock in warehouse at the end of a working day -> 0
 - Average pallet delivery maximum delay = 1 day
 - % Forklifts loaded > 30%
 - % Streets filled and blocked (jamming roads evaluation)
 - Daily workload (balanced)
 - Explore different scenarios (time frame)

Results year 2016

									POMPE UUBE OIL	TURBO ASSE	Impoliz HPOLiz HPOLiz HPOLiz HPOLiz Impoliz HPOLiz HPOLiz HPOLiz HPOLiz	
no 2016									SCRICO			MAGAZZIN
									PRESSATURA		ASTELLATURE	
forklift	d_percorsa/anno		%usage		gg_lavorativi/anno =	222	-				•	
forklifts (3)	1187287 305166		60% 27,87%		nr°_motori/anno =	158 80,0	-					
ork_help_1 ork_help_2	193654	-	12,24%		Km/gg= Km/engine=	80,0						
ork_help_2	90151	_	5,16%		Kiii/engiiie-	112,4	KIII					
tot	17762,	-	5,10%									
				C			•	not_use used	ed	•	Othization rate	
lean = 8. D = 8.99 27000 24300 21600	gg_in_mag	0-1	25700		forklifts transfer Loading/Unloading	45,62% 14,04%	->	used	3fork 561,0 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri	00% + 2 forkl ak load)
27000 24300 21600	gg_in_mag	1-2	1700	6,14%	transfer Loading/Unloading not_used			used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h		3 forklifts at 10 at 25% (for pea	00% + 2 forkl ak load)
27000 24300	9_ gg_in_mag 9_ 9_	_			transfer Loading/Unloading not_used	14,04%	->	used	3fork 561,0 h		3 forklifts at 10 at 25% (for pea Only 1 road cri mode)	00% + 2 forkl ak load) itical (one wa
27000 24300 21600 18900	9 gg_in_mag 9	1-2	1700 270	6,14%	transfer Loading/Unloading not_used	14,04%	->	used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri mode) Delivery to wo	00% + 2 forkl ak load) itical (one wa
27000 24300 21600 18900 16200	9_ gg_in_mag 9_ 9_ 9_ 9_ 9_	1-2	1700 270	6,14%	transfer Loading/Unloading not_used	14,04%	->	used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri mode)	00% + 2 forkl ak load) itical (one wa
27000 24300 21600 18900 16200 13500 10800	9 gg_in_mag 9	1-2	1700 270	6,14%	transfer Loading/Unloading not_used forklift_help_1	14,04% 40,34%	->	used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h 0,0 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri mode) Delivery to wo specific time fr	00% + 2 forkl ak load) itical (one wa
27000 24300 21600 18900 16200 13500 10800 8100	9 gg_in_mag 9	1-2	1700 270	6,14%	transfer Loading/Unloading not_used forklift_help_1	14,04% 40,34%	->	used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h 0,0 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri mode) Delivery to wo	00% + 2 forkl ak load) itical (one wa
27000 24300 21600 18900 16200 13500 10800	9 gg_in_mag 9	1-2	1700 270	6,14%	transfer Loading/Unloading not_used forklift_help_1 used =	14,04% 40,34%	->	used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h 0,0 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri mode) Delivery to wo specific time fr	00% + 2 forkl ak load) itical (one wa
27000 24300 21600 18900 16200 13500 10800 8100	gg_in_mag	1-2	1700 270	6,14%	transfer Loading/Unloading not_used forklift_help_1 used = forklift_help_2 used =	14,04% 40,34% 27,87%	->	used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h 0,0 h 374,6 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri mode) Delivery to wo specific time fr	00% + 2 forkl ak load) itical (one wa
27000 24300 21600 18900 16200 13500 10800 8100 5400 2700	gg_in_mag	1-2	1700 270	6,14%	transfer Loading/Unloading not_used forklift_help_1 used = forklift_help_2 used = forklift_help_3	14,04% 40,34% 27,87% 12,24%	-> -> ->	used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h 0,0 h 374,6 h 164,6 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri mode) Delivery to wo specific time fr	00% + 2 forkl ak load) itical (one wa
27000 24300 21600 18900 16200 13500 10800 8100 5400 2700	gg_in_mag	1-2	1700 270	6,14%	transfer Loading/Unloading not_used forklift_help_1 used = forklift_help_2 used =	14,04% 40,34% 27,87%	-> -> ->	used 1 fork 187,01 537,33	3fork 561,0 h 1612,0 h 0,0 h 374,6 h	•	3 forklifts at 10 at 25% (for pea Only 1 road cri mode) Delivery to wo specific time fr	00% + 2 forkl ak load) itical (one wa

φ

- Simulation is powerful tool to analyse performance of a plant and analyse alternatives
- Simulation bring additional benefit:
 - analyse and understand our real process (system)
 - understand parameters and elements that influence the system

Increase overall knowledge of the process under simulation

- To get better result in simulation we need to spend more time to :
 - 1. analyse the system to simulate
 - 2. check the reliability of the model vs the real system
 - 3. built the model
 - 4. analyse the result and fine tune the system

"Is very complicate to estimate, specially the future" Niels Bohr

"Study the past if you want to predict the future" Confucio

Thank you and visit us on www.wartsila.com

48 © Wärtsilä

Doc.ID: